Canal Restoration in Monroe County Benthic Monitoring Report

Jason Howard and James Fourqurean Seagrass Ecosystems Research Lab Florida International University

> FKNMS Steering Committee Meeting September 7th, 2016

Made possible by

Christian Lopes MSc student

Sara Wilson SERL Lab Manager

Made possible by

Townships Homeowner Organizations Individuals

Seagrass Ecosystems Research Lab Florida International University

About Us

http://seagrass.fiu.edu jhowa033@fiu.edu

Quantifying species of seagrass, algae, sponges, corals

Benthic Monitoring for Water Quality

Eutrophication model

Explicit model of ecosystem behavior #1

Nutrient pollution will lead to changes in relative abundances of primary producers in a predictable way.

Using Seagrasses Tissue

C:N:P $^{13}C/^{12}C$ $^{15}N/^{14}N$

Benthic Monitoring for Water Quality

Explicit model of ecosystem behavior #2

Nutrient pollution will shift N:P ratios of primary producers towards a taxonspecific "Redfield ratio"

Benthic Monitoring for Water Quality

Original 30 sites (1995)

- 17 sites in Dry Tortugas (2011)
- 10 sites for nearshore emphasis (2012)

5 sites for Everglades LTER (2000)

Animal surveys

Sediment Characteristics

25cm x 25cm randomly placed for benthic coverage

25cm x 25cm set sites for benthic coverage

10cm x 10cm randomly placed for canal wall coverage

Monitoring Canals

Monitoring Canals

Effect on Seagrasses

Canal		Distance from Canal Mouth (m)					Distance from Canal Mouth (m)				
	0	10	50	100	250		0	10	50	100	250
The lassia testu	dinum	10		100	200	Halodule wrig	ntii				nanananan saidi Pederanan sanan Ped
Thalassia testa	unum					- 28	2	2	2	0	0
28	0	4	2	4	1	20	0	0	0	0	2
29	2	4	5	4	0	122	0	0	0	0	2
132	0	0	1	0	1		0	U	U	U	U
137	0	0	2	0	5	137	0	0	0	1	0
147	0	0	0	2	2	147	1	0	4	3	3
147	0		0	2	2	148	2	0	0	0	0
148	0	0	0	5	U	263	0	0	0	0	0
263	0	0	5	5	0	266	0	3	0	0	0
266	0	3	4	4	0	200	0	3	0	U	0
277	1	2	2	0	3	2//	2	3	2	4	0
278	1	0	0.5	0	3	278	5	3	5	4	0
282	0	0	0	5	5	282	0	0	3	2	0
287	0	0	0	0	1	287	0	0	0	0	0
207	0	0	0	0	-	288	0	0	0	0	0
288	U	0	0	U	5	290	0	0	0	0	0
290	0	0	3	4	1	200	0	0	0	0	0
293	0	0	0	0	4	293	U	U	U	U	U
472	0	0	2	1	4	472	0	2	2	1	0
476	0	0	1	5	2	476	0	0	1	0	0

Effect on Seagrasses

N:P

Effect on Seagrasses

	$\delta^{15}N$			
	South			
	FL	Canals		
Mean	2.0	2.1		
n	78.0	45.0		
SE	0.2	0.3		
Median	1.8	2.4		
Minimum	-2.2	-2.6		
Maximum	5.4	7.2		

Sediment Density

0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Density (g cm⁻³)

0

0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Density (g cm⁻³)

Sediment Organic Carbon

Sediment Depth

Canal 29 – Key Largo

)ne year after Opening

Canal 266 – Big Pine

Canal 266- Before Dredging

Canal 266- After Dredging

Conclusions

-Most remediation Techniques are showing positive results on sediments -some on seagrass, algae and animals

-Care must be taken to preserve remediated canals

-Canals are affecting adjacent waters

Further sampling required to assess the effects of remediation on adjacent waters

http://seagrass.fiu.edu jhowa033@fiu.edu